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Diseases can have a huge impact on the quality of life of the human population. Humans have always been in the quest to
find strategies to avoid diseases that are life-threatening or affect the quality of life of humans. Effective use of resources
available to human to control different diseases has always been critical. Researchers are recently more interested to find
AI-based solutions to control the human population from diseases due to the overwhelming popularity of deep learning.
+ere are many supervised techniques that have always been applied for disease diagnosis. However, the main problem of
supervised based solutions is the availability of data, which is not always possible or not always complete. For instance, we
do not have enough data that shows the different states of humans and different states of environments, and how all
different actions taken by humans or viruses have ultimately resulted in a disease that eventually takes the lives of humans.
+erefore, there is a need to find unsupervised based solutions or some techniques that do not have a dependency on the
underlying dataset. In this paper, we have explored the reinforcement learning approach. We have tried different re-
inforcement learning algorithms to research different solutions for the prevention of diseases in the simulation of the
human population. We have explored different techniques for controlling the transmission of diseases and its effects on
health in the human population simulated in an environment. Our algorithms have found out policies that are best for the
human population to protect themselves from the transmission and infection of malaria. +e paper concludes that deep
learning-based algorithms such as Deep Deterministic Policy Gradient (DDPG) have outperformed traditional algorithms
such as Q-Learning or SARSA.

1. Introduction

Different types of diseases such as malaria, flu, dengue, and
HIV have a huge impact on the quality of life of the human
population [1–3]. If we consider malaria only, then
according to the World Health Organization’s report, ap-
proximately 3.2 billion people are infected with malaria. As
per their report, in 2016 and 2017, there were 217 and 219

million malaria cases reported, which shows an increase in
malaria cases in recent years [4]. +erefore, effective use of
resources to get malaria under control has been critical.
Insecticide-Treated Nets (ITNs) are the primary method of
malaria prevention [5] because there is a type of mosquito
called the anopheles mosquito; it bites after 9 p.m. When a
mosquito sets on the net, it dies due to the insecticide, which
disrupts the reproductive cycle. In addition to ITNs, the
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other malaria preventive policies include Indoor Residual
Spraying (IRS) [6], larvicide [7] in bodies of water, and
malaria vaccination [8–11].

Machine Learning algorithms are applied in different
domains and have made tremendous progress [12] where
healthcare sector is particularly influenced by machine
learning [13–15] in the past few years. +ese machine
learning algorithms are focusing on the diagnosis of diseases
[16] or forecasting future results [17], but the treatment of
diseases is not explored [18]. It is a very important step to
diagnose a disease and is considered as an important step to
treat diseases, and machine learning techniques can support
healthcare professionals in the treatment to some extent, but
it has been a challenging problem to find the best policy to
treat patients for medical professionals [19]. Recently, much
popularity is gained by reinforcement learning (RL) [20] in
video games [21–23], where good and bad actions are
learned by the agent through interactions with the envi-
ronment and the response of the environment. In the
context of video games, RL has performed very well, but
limited progress has been made in real-world domains like
health care. In video games such as AlphaGo and StarCraft,
the agent plays a large number of actions in the environment
and learns the optimal policy. However, in the context of
health care, it is considered unethical to use humans to train
RL algorithms and not to mention that this process would be
costly and takes years to complete. We are not able to
observe everything happening the body of a person. We can
measure blood pressure, temperature, and some other
measurements at different intervals of time, but these
measurements do not represent the complete state of a
patient. Similarly, the data collected in health care about
patients may exist for one time and may not exist for others.
For example, chest X-rays that are used in the treatment of
pneumonia [24] are collected before a person is infected and
after the person is cured, but the RL model has to know all
the estimates of the states the patient goes through. It is very
challenging in health care where there are many unknown
facts about patients at all time steps.

Reward function is one of the most important functions
in RL, and it is challenging in many real-world applications
to find a good reward function. In health care, it is evenmore
challenging to search for the reward function that keeps
balance between short-term success and overall long-term
improvements. For example, in case of sepsis [25], im-
provements in blood pressure at different durations of time
may not cause improvement in the overall success. Similarly,
having only a single high reward at the end of an episode
(i.e., survived or died) demonstrates that a long route is
followed without different intermediary rewards [26, 27]. It
is also difficult to know what actions result in reward and
what actions result in penalty. All the major breakthroughs
are possible by using simulated data in deep RL that is equal
to many actual years [28]. When data are generated through
simulators, it is not a problem, but in case of health care, it is
not possible to generate simulated data for the treatment of
different diseases. Generally, the data are very scarce to start
with training supervised learning, and the data that exist take
efforts to annotate to be used for supervised learning.

Furthermore, hospitals are not willing to share data of
patients mainly because of privacy reasons. All these facts
further make the application of deep RL to health care
challenging.

By nature, the health care data is nonstationary and
dynamic [29]. For example, it is possible that patients’
symptoms are stored at different intervals of time andmaybe
different records are stored for different patients. Over time,
the objectives of treatments may also change. In literature,
different studies [30–32] are focused on reducing the overall
mortality. When the condition of a person improves, the
focus shifts to a different objective such as the duration of the
virus staying in the body. Similarly, viruses or infections may
change much more rapidly and may evolve in different
dynamics [33–35] that are most probably not observed in the
training data used for supervised or semisupervised learning
algorithms. Decision-making in medical diagnosis is in-
herently sequential [36, 37]. It means that a patient visits a
health care centre for the treatment of a disease. +e doctor,
based on previous experiences, decides a treatment to be
followed. Later, when the patient returns to the same doctor,
the treatment that was previously suggested by the doctor
decides the current state of the patient and also helps the
doctor in which decision needs to be taken next. In the
existing state-of-the-art AI strategies of dealing with disease
treatment [38, 39], the sequential nature of the decisions is
ignored [40]. +ese AI systems make decisions on the basis
of the present state of the patients. +e sequential nature of
medical treatment can be effectively modelled as Markov
Decision Process (MDP) [41–44] and better solved through
RL. +e RL algorithms will not only consider the instan-
taneous outcomes of treatment but also the long-term
benefits of the patients [45].

An intervention of actions to avoid malaria are sys-
tematically explored in this paper. +e paper demonstrates a
real-world example of reinforcement learning, where sim-
ulated humans are trained to learn an effective technique to
avoid malaria. In the literature, AI techniques are used for
the prediction, diagnosis, and healthcare planning, but this
paper takes a different approach by simulating an envi-
ronment and using simulated humans to use different re-
inforcement learning techniques to avoid malaria. A
combination of interventions is explored to control the
transmission of malaria and learn techniques for malaria
avoidance.

+e paper is organized as follows: the related works are
explained in Section 2. +e problem of malaria avoidance
and the methodology of reinforcement learning are given in
Section 3. Experiments are performed, and their results are
analysed in Section 4. Concluding remarks of the paper are
given in Section 5.

2. Related Work

Recent advancements in machine learning and big data have
motivated researchers of different domains to use these
algorithms in their problems. Biomedical and health care
researchers are getting benefits from these algorithms in
early disease recognition, community services, and patients
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care. In [46], machine learning and MapReduce algorithms
are used to effectively predict different diseases in disease-
frequent societies. +e paper demonstrated to achieve 94.8%
accuracy and convergence speed that is faster than CNN
(Convolutional Neural Network) based algorithms. Simi-
larly, deep learning and big data techniques have been used
in [47] to predict infectious diseases. +e authors have
combined Deep Neural Network (DNN) and Long Short-
Term Memory (LSTM) and evaluated the performance with
Autoregressive Integrated Moving Average (ARIMA) in
making the prediction of different diseases one week in the
future. Better results have been achieved compared to
ARIMA. Automatic diagnosis of malaria enables us to
provide reliability in health care services to areas where
resources are limited. Machine learning techniques have
been tried to investigate the process of automating malaria
detection. In [48], malaria classification is performed using
CNN. Similarly, in [49], CNN has been used to detect
malaria classification and has demonstrated promising ac-
curacy. Deep reinforcement learning (DRL) has recently
attained remarkable success, notably in complex games like
Atari, Go, and Chess. +ese achievements are mainly pos-
sible because of the powerful function approximation with
the help of DNN. DRL has been proved as an effective
method in the medical context. Several applications of RL
have been found in the context of medicine. For instance, RL
methods have been used to develop strategies of treatment
for epilepsy [50] and lung cancer [51]. Authors have used the
sepsis dataset which is a subset of the MIMIC-III dataset
[25]. An action space consisting of vasopressors and IV fluid
is selected. Each drug of varying amount is grouped in four
bins. Double Deep Q-Network is used for the evaluation.
SOFA score which is used for measurements of organ failure
is used for the reward function. U-curve is used for eval-
uation. +e mortality rate is used as a function of dosage of
policy prescription versus the policy that is actually followed.

In [19], DRL is used to develop a framework that predicts
an optimal strategy to deal with Dynamic Treatment Regimes
usingmedical data.+e paper has claimed that their RLmodel
is more flexible and adaptive in high dimensional action and
state spaces compared to other RL based approaches. +e
framework models real-world complexity in helping doctors
and patients to make a personalized decision in making
treatment choices and disease progression. +e framework
combines supervised learning and DRL using DNN. +e
dataset is taken from the database of the Centre for Inter-
national Bone Marrow Transplant Research (CIBMTR)
registry. +e framework has demonstrated achieving prom-
ising accuracy to predict a human doctor’s decision and at the
same time compute a high reward function. In [52], an RL
system is developed that helps diabetes patients to engage in
different physical activities. Messages sent to patients were
made personalized to patients and the results have demon-
strated that participants receiving messages with the RL al-
gorithm increased the number of physical activities and
walking speed. A supervised RL with recurrent neural net-
work (SRL-RNN) is combined in a framework to make
different treatment recommendations by Wang et al. in [53].
+eir results of experiments conducted on MIMIC-3 dataset

have demonstrated that the RL based framework can reduce
the estimated mortality and at the same time provide
promising accuracy to match doctor’s prescriptions. In [54],
the authors describe a novel technique that can find the
optimal policy that can treat patients with chemo using RL.
+e authors have usedQ-Learning, and, for the action space, a
mechanism is used to quantify doses for a given time period
that an agent can choose from. +e cycle of dose is initiated
with a frequency as determined by an expert. At the end of
each cycle, transition states are compared. +e mean re-
duction in tumour diameter determines the reward function.
Simulated clinical trials are used for the evaluation of the
algorithm.

In [55], the authors have taken a different approach that
uses the RL techniques to encourage healthy habits instead
of looking for direct treatment. In [56], the authors focus on
sepsis and RL, but a different approach is taken that uses the
RL techniques to control glycemic. In [57], the authors have
focused on counterfactual inference and domain adversarial
Neural Networks. It is a complicated problem to solve the
problem of decision-making under uncertainty. Health care
practitioners are facing problems under challenging con-
straints, with limited tools to make data driven decisions. In
[58], the authors have solved the problem of finding an
optimal malaria policy as a stochastic multiarmed bandit
problem and have developed three agent-based strategies to
explore the space of policies. A Gaussian Process regression
is applied to the finding of each agent, for compression and
for stochastic results from simulating the spread of malaria
in a fixed population.+e policy generated by the simulation
is compared with human experts in the field for direct
reference. In [59], the authors have exposed subtleties as-
sociated with evaluating RL algorithms in health care. +e
focus is on the observational setting where RL algorithms
have proposed a treatment policy and been evaluated based
on historical data. A survey in [60] discusses the different
applications of reinforcement learning in health care. +e
paper provides a systematic understanding of theoretical
foundations, methods and techniques, challenges, and new
insights into emerging directions. A context aware hierar-
chical RL scheme [61] has been shown to significantly
improve the accuracy of symptom checking over traditional
systems while reducing the number of inquiries. Another
study that introduces basic concepts of RL and how RL could
be effectively used in health care is given in [62].

Policy for malaria control using the reinforcement
learning algorithm is explained in [63, 64]. +e authors have
applied the Genetic Algorithms [65], Bayesian Optimization
[66], and Q-Learning with sequence breaking to search for
optimal policy for a few years. +eir experiments demon-
strated the best performance by Q-Learning algorithm. A
systematic review of agent-based models for malaria
transmission is given in [67]. +e paper covers an extensive
array of topics covering the spectrum of transmission and
intervention of malaria. Machine learning algorithms for the
prediction of different diseases are studied in [68]. +e
authors have used Decision Tree andMapReduce algorithms
and have claimed to achieve 94.8% accuracy. Machine
learning algorithms have been used to automatically
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diagnose malaria in [69]. Deep Convolutional Neural
Networks have been used for classification. +e authors in
[70] have discussed safety applications related to AI in those
domains where deep reinforcement learning is applied to the
control of automatic mobile robots. An investigation of the
risk associated with malaria infection to identify those
bottlenecks in different malaria elimination techniques is
discussed in [71]. Other relevant studies can be found in
[72–74].

3. Methodology

Reinforcement learning (RL) [75] is an example of machine
learning methods falling between supervised and unsuper-
vised learning, where an agent learns by interacting with the
environment. +e agent performs certain actions and re-
ceives feedback from the environment. +is feedback is in
the form of negative or positive reward and determines the
sequence of good or bad actions to be adapted within a
particular situation. As a result, the agent can perform its
operation efficiently without any intervention from a hu-
man. In other words, RL is a learningmethod where an agent
learns a sequence of actions to eventually increase the reward
function. +e agent decides which action is the most ap-
propriate and yields a maximum reward. It is possible that
an action may not give a positive immediate reward but the
long-term reward is also considered. In RL, we have two
components, that is, agent and environment as shown in
Figure 1. +e agent represents the type of RL algorithm, and
the environment represents what action returns which re-
ward. +e environment is established by sending a state at
time t as St ∈ S, where S is the representation of the set of
possible states to the agent. +e action taken by the agent at
time t is represented by At ∈A (St), where A (St) is the
representation of the set of actions possible to be taken at
state St. +e reward to be received by performing that action
is represented as Rt+1 ∈R, where R is the set of rewards. After
one time-step, the next state St+1 will be sent to the agent by
the environment along with reward Rt+1. +is reward will
eventually help the agent increase its knowledge to be used in
evaluating its last action. +is process of sending state and
receiving reward as an outcome by the agent continues until
the environment sends the last or terminal state to the agent.

In addition to the agent and environment, there are four
components in a RL environment: (i) policy, (ii) reward, (iii)
value function, and (iv) model of the environment.

(1) Policy. A policy defines the behaviour/reaction of an
agent at a particular instance of time. Sometimes, a
policy can be described as a simple function or as a
lookup table, where a policy may involve a lot of
computation, for example, the searching process.
+e policy is considered as a central part of the RL
agent because it alone can describe the reaction of the
agent. +e policy may be stochastic, to determine
possibilities for every action. +e policy is repre-
sented by πt, where πt (a | s) demonstrates the
probability of At � a if St � s

(2) Reward. A reward signal indicates the target of an RL
problem. As a result of an action taken by the agent,
the environment returns a number, called a reward,
at every time step. +e objective of the agent is to get
most of the total reward over time. +us, the reward
signal identifies that an action is good or bad. +e
rewards signal determines the action to be taken. If
an action returns a low reward, then the policy will be
changed to select another action in a similar situa-
tion. So generally, a reward signal is the stochastic
function of the state and action.

(3) Value Function. A reward signal identifies what is
good at the current time, while a value function
describes what is good in the long run. In almost all
RL algorithms, the most important component to be
considered is the method to efficiently estimate the
values. More precisely, the current value of the
earlier state is adjusted to be closer to the value of the
later state. +is can be done by moving the earlier
state’s value a fraction toward the value of the later
state. Let s denote the state before the move, and s is
the state after the Agent Environment moves; then,
the update to the estimated value of s, denoted as
V(s), can be written as shown in equation (1), where
α′ is a small positive fraction called the step-size
parameter, which influences the rate of learning. r +

cV(s′) is called Temporal Difference target and is an
unbiased estimate for V(s′). In equation (1), r
represents reward and c represents the discounting
factor. +is update rule is an example of a Temporal
Difference learning method, called so because its
changes are based on a difference, V(s′) − V(s), that
is, difference between estimates at two different
times:

V(s)⟵V(s) + α r + cV s′(  − V(s) . (1)

(4) Model. A model allows inferences of the actions in an
environment. Suppose a state and action are given;
then, it is possible that the model determines the
resultant next state and reward.+emethods that use
the models and planning to solve RL Problems are
known as model-based methods. +ose techniques
which are explicitly trail-and-error learner are called
model-free methods.

Agent Environment

Action (At)

State (St + 1)

Reward (Rt + 1)

St

Rt

Figure 1: A typical reinforcement learning paradigm.
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Let us assume that there are finite states and rewards. Let
us consider an environment that may respond at time t+ 1 to
the action taken at time t. +is response actually depends on
everything that happened earlier. +e complete probability
distribution of the dynamics of the system can be defined in
equation (2), for all r, S, and all possible values of the actions
in the past represented in the form of action, states, and
rewards, that is, St, At, and Rt. However, due to the Mar-
kovian property, we can represent the response of the en-
vironment at t+ 1 that depends only on the state and action
at time t. +e dynamics of the environment can be defined as
given in equation (3), for all r, s′, St, and At. It means that a
state or an environment has a Markovian property if and
only if equations (2) and (3) are equal. +e Markovian
property is very important in RL, as decisions and values are
a function of the current state. +ese decisions and values
can be effective and carry more information when the state
representation carries enough information:

Pr Rt+1 � r, St+1 � S′|S0, A0, R1, . . . ,

St−1, At−1, Rt, St, At,
(2)

p s′, r|s, a(  � Pr Rt+1 � r, St+1 � s′|St, At . (3)

+e task of RL that satisfied the Markovian property is
known by the nameMarkov Decision Process (MDP). Given
a state s and action a, the computation of probability of next
state s′ along with reward r is denoted as given in equation
(4). +e expected value of rewards for the state-action pairs
can be computed given in equation (5). +e expected re-
wards for state-action-next-state is given in equation (6):

p s′, r|s,a(  �Pr St+1 � s′,Rt+1 � r|St � s,At � a , (4)

r(s,a) � E Rt+1|St � s,At � a 

� 
r∈R

r 

s′∈S

p s′, r|s,a( , (5)

r s,a,s′(  � E Rt+1|St � s,At � a,St+1 � s′ 

�
r∈Rr · p s′, r|s,a( 

p s′|s,a( 
.

(6)

Value functions, which is a function of states or state-
action pairs, are used to estimate the performance of an
agent in a given state. +is performance is computed in
terms of future rewards to be collected. +e state value is
denoted byVπ(s) given a policy π and state s and is computed
as shown in equation (7), where Eπ [.] represents the ex-
pectation of variable when an agent follows a policy π at time
step t. Similarly, the action value of a state s following a
policy π represented by qπ (s, a) is given in equation (8),
where qπ is the function of action-value when π policy is
used:

Vπ(s) � Eπ Gt |St � s 

� Eπ 

∞

k�0
c

k
Rt+k+1|St � s⎡⎣ ⎤⎦,

(7)

qπ(s, a) � Eπ Gt|St � s, At � a 

� Eπ 

∞

k�0
c

k
Rt+k+1|St � s, At � a⎡⎣ ⎤⎦.

(8)

RL problem is solved by searching for a policy that helps
the agent to collect maximum possible rewards over the
execution of the simulation. A given policy π is treated as a
better policy or equal to another policy π′, it the expectation
of the π is greater or equal to the expectation of π′ for all
states. In other words, π ≥ π′ if and only if
Vπ(s)≥Vπ′(S)∀ s ∈ S. An optimal policy is the policy that is
considered good or equal to all possible policies. Optimal
policies are represented by π∗. +e same state-value function
is shared by optimal policies as V∗ and defined as V∗(S) �

max Vπ(S)∀ s ∈ S. +ey also share same optimal action-value
function, represented by q∗ defined as q∗(s, a) � max
qπ(s, a)∀ s ∈ S and a ∈A(s).

+e model-based RL means the simulation of the dy-
namics of a given environment. +e model learns the
probability of moving from the current state s0, taking action
a and ending in next state s1. Given the learning of transition
probability, the agent can determine the probability to enter
a state given the current state and action. However, model-
based algorithms are not practical because the state space
and action space grow. On the other side, the model-free
algorithms depend on trial-and-error to update its knowl-
edge. +erefore, space is not required to store all combi-
nation of states and actions. In this paper, we are using
model-free algorithms. Classification of RL algorithms are
made based on on-policy and off-policy. When the value is
based on the current action a and derived from the current
policy, it is known as on-policy. When an action a∗ is
obtained from a different policy, then it is known as off-
policy.

3.1. Q-Learning. A well-known algorithm in RL is Q-
Learning developed by Watkins [76]. Its proof of conver-
gence is given by Jaakkola [77]. Q-Learning is a simple
technique, and it can compute optimal action value without
the involvement of intermediary evaluation of cost and the
usage of a model [78]. +is algorithm is model-free and is
considered as off-policy algorithm, which is derived from
Bellman Equation as shown in equation (9), where expec-
tation is given by E and discounting factor is represented by
λ. +is update equation is shown in Algorithm 1 on line 10.
Learning rate is represented by α. +e next state’s Q value
determine the next action a instead of using the current
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policy. +e overall objective of the algorithm is to maximize
the Q-value:

Q
π
(s, a) � Es′ r + λQ

π
s′, a′(  |s, a . (9)

3.2. SARSA. A similar algorithm to Q-Learning is SARSA
[79, 80]. In case of Q-Learning, greedy policy is followed, but
in case of SARSA on-policy is followed. SARSA learns Q-
value by performing actions using the current policy. Al-
gorithm 2 shows the algorithm of SARSA. Current policy is
used to carry out selection of actions.

3.3. Deep Deterministic Policy Gradient. An actor-critic ar-
chitecture is called Deep Deterministic Policy Gradient
(DDPG) [81, 82]. +e parameter x is tuned for policy by
actor as given in equation (10). Using Temporal Difference
error, the policy computed by the action is evaluated by critic
as demonstrated in equation (11). +e policy decided by the
actor is shown by v. +e idea of experience replay and
separate target network as utilized by Deep Q Network
(DQN) [83] is used by DDPG. Algorithm 3 shows the al-
gorithm of DDPG.

πθ(s, a) � P[a|s, θ], (10)

rt+1 + cV
υ

St+1(  − V
υ

St( . (11)

A(s) � aITN, aIRS , where aITN ∈ [0, 1] and aIRS ∈ [0, 1].

(12)

4. Simulation and Discussion

In this section, we present the results of algorithms explained
in Section 3 obtained in a simulated human population and
see which algorithm performs better to prevent humans
from diseases. For the evaluation, we need an environment
where we have different states, actions, and agents

(representative of human population) looking for the best
policy to avoid diseases such as malaria, flu, and HIV. In this
section, results are shown for malaria avoidance only, but
similar environment with sufficient information can be used
for the avoidance of other types of diseases such as flu, HIV,
and dengue. An environment where a human, mosquito,
and other factors that can influence the transmission of
malaria virus to spread to human is shown in Figure 2. +e
box on the left contains factors relevant to human and the
box on the right contains factors pertaining to mosquitoes.
Different factors that can influence the disease are shown
inside the arrows linking the boxes for humans and mos-
quitoes. Environment factors and interventions are shown
on the top and bottom of the boxes for human and
mosquitoes.

+e IBM Africa research team has taken steps to control
malaria by developing a world-class environment to distribute
bed nets and repellents.+eir goal is to develop a custom agent
that will help identify the best policies for rewards based on the
simulation environment. Our work leverages the environment
developed by IBM Africa research for reinforcement learning
competition on hexagon-ml (https://compete.hexagon-ml.
com/practice/rl_competition/38/) where an agent learns the
best policy for the control of diseases, that is, malaria. +e
environment provides stochastic transmission models for
malaria and different researchers can evaluate the impact of
different malaria control interventions. In the environment, an
agent may explore optimal policies to control the spread of the
malaria virus. A diagram representing the environment de-
veloped by Hexagon-ML for finding the best policy for
avoiding malaria is given in Figure 3. +e environment con-
tains five years. Every year is a state. At every state, we take
different actions in the form of ITN and IRS.

States are represented as S∈ {1, 2, 3, 4, 5}, where each
number shows the number of the year. We are trying to solve
the problem of making one-shot policy recommendations for
the simulation intervention period of 5 years.+emain control
methods used in different regions are mass-distribution of
long-lasting ITNs, IRS with pyrethroids, and the prompt and

Input:
States: S� 1, . . ., n
Actions: A� 1, . . ., n
Rewards: R: S×A⟶R Transitions: T: S×A⟶ S
α ∈ [0, 1] and c ∈ [0, 1]
Randomly Initialize Q (s, a)∀ s ∈ S, a ∈A (s)
while For every episode do

Initialize S ∈ S
Select a from s on the basis of exploration strategy (e.g. ε-greedy)
while For every step in the episode do

//Repeat until s is terminal
Compute π on the basis of Q and strategy of exploration (e.g. π (s)� argmaxa Q (s, a))
a⟵ π (s)
r⟵R (s, a)
s⟵T (s, a)
Q (s′, a)⟵ (1− α).Q (s, a) + α [r+maxa

′ Q (s′, a′)]
s⟵ s

ALGORITHM 1: Q-Learning.
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effective treatment ofmalaria. Actions, represented byA (s), are
performed in the form of ITN and IRS, where the values of ITN
and IRS are infinite real numbers between 0 and 1.

+e agent trained on a reinforcement learning algorithm
will explore a policy space made up of the first two

components, that is, ITNs and IRS, which are strategies for
direct intervention.+eprompt and effective treatment is given
by the environment parameters and impacts the rewards. +e
first component. +at is, ITN, is the development of nets,
defining the population coverage (aITN∈ (0, 1]). +e second

Input:
States: S� 1, . . ., n
Actions: A� 1, . . ., n
Rewards: R: S×A⟶R
Transitions: T: S×A⟶ S
α ∈ [0, 1] and c ∈ [0, 1]
λ ∈ [0, 1] this shows the trade-off between Temporal Difference and Monte Carlo methods.
Randomly Initialize Q (s, a)∀ s ∈ S, a ∈A (s)
while For every episode do

Randomly initialize s ∈ S
Initialize e with 0
Randomly select (s, a) ∈ S×A
while For every step in the episode do

//Repeat until s is terminal
r⟵R (s, a)
s′⟵T (s, a)
Compute π based on Q using exploration strategy (e.g. ε-greedy)
a′⟵ π (s′)
e (s, a)⟵ e(s, a) + 1
δ⟵ r+ c.Q (s′, a′)−Q (s, a)
for (s′, a′) ∈ S×A do

Q (s′, a′)⟵Q (s′, a′) + α.δ.e (s′, a′)
e (s′, a′⟵ c.λ.e (s′, a′))

s⟵ s′
a⟵ a′

ALGORITHM 2: SARSA.

(1) Randomly initialize critic network Q(s, a|θQ) with weight θQ

(2) Randomly initialize actor μ(s | θμ) with weight θμ

(3) Initialize target network Q′ with weight θQ′ ⟵ θQ

(4) Initialize target network μ′ with weight θμ′ ⟵ θμ

(5) Initialize replay buffer R

(6) while For every episode do
(7) Randomly initialize N for exploration
(8) Get initial observation state s1
(9) while For every step in the episode do

//Repeat until s is terminal
(10) Section action at � μ(st | θμ) + Nt as per the current policy and exploration strategy
(11) Perform action at and monitor rewards rt and new statest+1
(12) Store (st, at, rt, st+1) in R

(13) Sample a randomly selected minibatch of N transition (si, ai, ri, Si+1) from R

(14) yi � ri + cQ′(si+1, μ′(si+1| θ
μ′ | θQ′ ))

(15) L � 1/Ni(yi − Q(si, ai| θ
Q))2

//Update rule for critic to minimize the loss
(16) ΔθμJ ≈ 1/NiΔαQ(s, a | θQ)|s�si ,a�μ(Si)

Δ
θμ
μ(s | θμ)|si

//Update rule for actor policy using the sampled policy gradient
(17) θQ′ ⟵ cθQ + (1 − c)θQ′

//Update rule for target network
(18) θμ′ ⟵ cθμ + (1 − c)θμ′

ALGORITHM 3: Deep Deterministic Policy Gradient.
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component is the use of seasonal spraying, and it defines the
proportion of population coverage for this intervention
(aIRS∈ (0, 1]). +e seasonal spraying is performed through
alternating the intervention between April and June every year
in different regions. +e policy decision is framed in a way of
the simulated population to be covered by a particular in-
tervention; the space of policy A is designed through ai∈A�

[aITN, aIRS].
Health care organizations should be able to explore all

possible set of actions for appropriate malaria interventions
within the populations. +ese policies include a mix of
actions, like the distribution of ITNs, IRS, larvicide in water,
and vaccination for malaria control. +e space of possible
policies for the control of malaria is not complete and in-
efficient for health care experts to explore without an ade-
quate decision support system. +e environment in
simulation handles the distribution of the interventions in
the simulated population. +e agent is in charge of the
complex actions of targeted interventions, which are not
reported previously. Although the action space is finite (i.e.,
finite number of people in the simulation environment) the
space size grows exponentially as more interventions are
added. +e computation time of simulation will also grow

linearly with the number of populations. +erefore, a
complex exploration of the entire action space becomes
impossible as complexity goes to a real-world equivalent
simulation.

+e agent learns different rewards during the learning
process. +e idea of learning is to collect as much reward as
possible during the process of execution of the experiment.
+ese rewards are infinite and usually represented by
Rπ ∈ (−∞, +∞), where the policy is represented by π. Every
policy is associated with a reward represented by Rθ(ai) and
is a stochastic parameterization of the simulation shown as θ
which produces random distribution of parameters for the
simulated environment.

+e environment is executed for 100 episodes, and re-
wards are collected. An episode consists of five consecutive
years. +e rewards collected by different algorithms are
demonstrated in Figure 4. +e random selection algorithm
when there is no learning for 100 episodes is given in Figure
4(a). In random policy learning, every time one episode is
finished, the environment is initiated with different random
states and different policy is tried at random to go from one
state to another to collect rewards. In this algorithm, no
learning is involved, and this experiment is performed only
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to show a base line for comparison with other algorithms.
+e Q-learning algorithm is shown in Figure 4(b). Com-
pared to random search algorithm, this algorithm has shown
improvements as the agent is learning through Q-learning
mechanism to collect rewards in the learning process.
SARSA algorithm is used, and the result of reward collection
is shown in Figure 4(c). +e SARSA trained agents are used
to look to policy to avoid malaria in a simulated human
environment and has shown improvements over simple Q-
learning algorithm. An even more sophisticated algorithm
known as DDPG is used in the environment to collect re-
wards, and results are demonstrated in Figure 4(d). +is
algorithm shows improvements compared to all other three

algorithms and demonstrated that deep learning methods
can potentially collect better results in reinforcement
learning algorithms.

We have combined the results of the algorithms trained
in this paper in Figure 5. In random searching process, there
is no learning, and therefore reward is not maximized. But in
other algorithms such as Q-learning, SARSA, and DDPG,
there is learning involved, and therefore reward is maxi-
mized. +e overall rewards collected by different algorithms
are combined in one figure (Figure 5(b)). +e maximum
rewards are collected by DDPG because a complex algorithm
is used for collection of rewards. +is comparison of three
algorithms is shown in Table 1. +is comparison
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Figure 4: Reward collection by agent trained with different reinforcement learning algorithms in 100 episodes. (a) Reward collection when
the agent randomly chooses action. (b) Reward collection when the agent is trained with Q-Learning. (c) Reward collection when the agent is
trained with SARSA. (d) Reward collection when the agent is trained with DDPG.
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demonstrates the best policy obtained by operating in the
environment to avoid malaria and the related reward col-
lected by performing the best policy.+is table demonstrates
that DDPG has outperformed traditional learning
algorithms.

5. Conclusion

Since the development of human civilizations, humans have
always been in the quest to improve the quality of life from
different perspectives. We are looking for the most com-
fortable accommodation, fast and secure transport, clean
and healthy food, comfortable clothes, and many other
things. But because of the environmental changes and
different actions taken by humans, there are possibilities of
different viruses entering the body of humans and affecting
the quality of life of humans. For instance, malaria, flu,
HIV, and dengue are some diseases that not only affect a
single individual but also can affect the whole population,
as the virus spreads from one person to another person.
Humans over time have learned different methods to treat
these diseases.+ere are doctors, who prescribe medicine to
treat diseases, and hence diseases are in control. But the
problem is that the decision of a doctor requires a huge

amount of knowledge and experience, to effectively cure a
disease. We think it is possible that the human effort is
minimized, and some AI-based solutions are explored.
Different AI-based solutions have also been explored by
researchers, in the form of supervised learning such as
ANN, KNN, and SVM. However, the problem with these
supervised learning is that the model is trained on the
existing data to make similar decisions when a similar data
is presented as testing. +ere is a huge gap to further
generalize the solution. +erefore, unsupervised learning
algorithms and reinforcement learning are becoming
popular. In this paper, we have explored reinforcement
learning-based algorithms, where an agent interacts with
the environment to get feedback and improves its state of
knowledge. We have experimented with three different
algorithms in reinforcement learning. +ese algorithms are
Q-Learning, SARSA, and DDPG. All these algorithms
perform better than random search, as there is learning
involved. Q-Learning and SARSA are based on traditional
methods of reinforcement learning. However, because of
the popularity of deep learning, researchers are interested
in introducing deep learning in reinforcement learning.
DDPG is a deep learning-based algorithm. Our experi-
ments have demonstrated that deep learning-based
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Figure 5: Comparison of reward collection by agent trained with different reinforcement learning algorithms, that is, Q-Learning, SARSA,
and DDPG in 100 episodes. (a) Reward collection when the agent is trained with different reinforcement learning algorithms, that is, Q-
Learning, SARSA, and DDPG. (b) Sum of rewards over time when the agent is trained with different reinforcement learning algorithms Q-
Learning, SARSA, and DDPG.

Table 1: +e comparison of three reinforcement learning algorithms explained in the paper in terms of best rewards and best policy when
the agent is executed for 100 episodes.

Algorithm Best reward
Optimal policy

Year 1 Year 2 Year 3 Year 4 Year 5
Random 174.16 [0.2, 0.7] [0.6, 0.9] [0.1, 0.8] [0.4, 0.6] [0.3, 0.1]
Q-Learning 228.77 [0.3, 0.1] [0.3, 0.2] [0.5, 0.2] [0.9, 0.5] [0.5, 0.1]
SARSA 161.74 [0.3, 0.1] [0.3, 0.1] [0.3, 0.1] [0.3, 0.1] [0.3, 0.1]
DDPG 325.55 [1.0, 0.8] [0.1, 0.0] [0.1, 0.8] [0.6, 1.0] [0.6, 1.0]
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algorithms are the most suitable algorithm for such type of
complex environment, where human, their actions, envi-
ronments, and their feedback play a very important role.
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